Algebra is more than a set of procedures for manipulating symbols. Algebra provides a way to explore, analyze, and represent mathematical concepts and ideas. It can describe relationships that are purely mathematical or ones that arise in real-world phenomena and are modeled by algebraic expressions. Learning algebra helps students make connections in varied mathematical representations, mathematics topics, and disciplines that rely on mathematical relationships. Algebra offers a way to generalize mathematical ideas and relationships, which apply to a wide variety of mathematical and nonmathematical settings. NCTM, Guiding Principles for Mathematics Curriculum and Assessment

Our goal is to use varying teaching/learning strategies in order to meet the needs of all the students and the demands of the content. These strategies include, but are not limited to, the following:

Give students a new type of problem and have students arrive at solutions individually or in groups. Then share with group to collect all the different ways to solve a problem.

Present a new problem and think, pair, share.

Give students a new type of problem together with a worked out solution and have students discover and explain, in writing and verbally, how and why the solution works.

Direct instruction – Typically direct instruction will follow some exploratory time for students to play around with a new type of problem/situation/scenario. Students' brainstorming will be the start of direct instruction, with notes and examples and information that help students make sense of the new problem and place it in the context of prior knowledge.

Have students analyze a new problem: what about it looks familiar, what about it looks new, how could they start the problem or, if they can't start, what might be involved while attacking the problem. Students share ideas in writing and verbally.

Have students use technology (graphing calculators, Geometer's Sketchpad, Graphmatica, etc) to explore functions and mathematical concepts.

Have students reflect on their learning in writing and verbally. A regular class wrap up will include asking students to write what they learned in the day's work, what questions they still have, what it reminds them of from past work, and other associations they have with the new material.

Expose students to complex problems that involve many concepts and lend themselves to a variety of solutions and strategies. These could be problems that take anywhere from 15 minutes to an hour to multiple days to solve.

Instructional goals

Nurture an appreciation for the distinct nature of mathematics as an abstract language system that is internally consistent and understood through rigorous analytical thinking skills.

Nurture an appreciation for how the analytical thinking and problem solving skills honed in mathematics is essential for students' current and future lives regardless of whether they choose a mathematical or scientific field.

Wherever possible, tie the mathematical content to other fields such as economics, literature, all the sciences, psychology, politics, etc., so that students can see the relevance and use of mathematics in other contexts.

Nurture numeracy and statistical savvy so that students may be critical consumers of statistical information in their current and future lives.

A constant goal is to achieve depth of understanding and connection, despite what we consider to be a much too full list of topics prescribed by the State of New York.

Nurture mathematical reasoning and analytical skills and the ways to express one's reasoning, both verbally and in writing. We want to encourage students to look for and recognize patterns, internal structure, regularities or irregularities both in "real-world" problems and in the symbolic language of mathematics. We want students to see when patterns are meaningful as opposed to when they are by chance or accidental. We want students to justify their solutions and to see why those solutions make sense.

Assessment

We plan to use both formal and informal assessments to ascertain understanding. Assessments will also be both formative and summative.

Projects – research and writing projects, statistics projects that involve gathering and analyzing data, solving and explaining solutions to complex, multi-faceted problems

Tests and quizzes

Group work – group work allows the teacher to circulate and listen in, thus giving the teacher an idea of student understanding and misconceptions.

Written descriptions of solutions to problems – students will be asked to describe their process for solving a particular problem in writing, which will give the teacher an insight into student understanding of the method being assessed.

Homework

We hope to train students to make homework a productive, reflective process. Homework is a time to practice problem solving skills and thinking processes. By providing solutions, we hope to encourage students to check their own work and work independently to find their own mistakes and identify any misunderstandings or gaps in knowledge.

Unit 1: Relations and Functions Unit 2: Polynomials and Quadratics Unit 3: Complex Numbers Unit 4: Rational Expressions and Equations Unit 5: Exponents and Radicals Unit 6: Exponential Functions and Equations Unit 7: Logarithms Unit 8: Sequence and Series Unit 9: Statistics Unit 10: Probability Unit 11: Trigonometry – Six Trig Functions Unit 12: Trigonometry Equations, Identities, and Radians Unit 13: Trigonometry Graphs

Unit 14: Trigonometry of Non-Right Triangles

Sample problems can be found for each performance indicator in the NYSED Algebra 2 and Trigonometry Curriculum

Unit 1: Relations and Functions

- 1. What is a relation and what is a function?
- 2. How can functions be represented numerically, graphically, algebraically, and verbally?
- 3. How can we use different types of functions to model real-world situations?
- 4. What effect do transformations have on functions?

Time	Perform Ind	Content	Lessons	Vocabulary
Sept. (3 weeks)	A2.A.37	Define a relation and function	 lesson 1 introduce and discuss types of functions, their graphs, equations, tables, applications that call for different functions, etc: linear, absolute value, 	relation function domain
	A2.A.38	Determine when a relation is a function		range composition inverse onto
	A2.A.52	Identify relations and functions, using graphs	quadratic, power, exponential, logarithmic, trigonometric, polynomial	one to one linear absolute value
	A2.A.51	Determine the domain and range of a function from its graph	 define relation and function when is a relation a	quadratic polynomial power exponential logarithmic trigonometry transformation mapping direct variation
	A2.A.39	Determine the domain and range of a function from its equation	 function identify relations and functions using graphs, tables, words, mappings, algebraic expressions function notation (f(x) and set builder notation) domain and range (using graphs, equations, tables, mappings, words) onto evaluate functions lesson 3 compositions inverses proving inverses using composition when is an inverse also a function: one-to-one lesson 4 linear functions – direct variation, applications, graphs, given f(x) find x. solve absolute value equations and inequalities 	
	A2.A.40	Write functions in functional notation		
	A2.A.41	Use functional notation to evaluate functions for given values in the domain		
	A2.A.42	Find the composition of functions		
	A2.A.43	Determine if a function is one-to-one, onto, or both		
	A2.A.44	Define the inverse of a function		
	A2.A.45	Determine the inverse of a function and use composition to justify the result		
	A2.A.46	Perform transformations with functions and relations: $f(x+a)$, $f(x)+a$, f(-x), $-f(x)$, $af(x)$		

A2.A-47	Determine the center-radius form for the equation of a circle in standard form	 lesson 5 transformations of functions and relations
A2.A.48	Write the equation of a circle, given its center and a point on the circle	$ \begin{array}{c} f(x+a), f(x)+a, \\ f(-x), -f(x), \\ af(x) \end{array} $
A2.A.49	Write the equation of a circle from its graph	lesson 6 • equation of a circle: use knowledge of
A2.A.1	Solve absolute value equations and inequalities involving expressions in one variable	 transformations to justify equation of a circle transformations with circles

Unit 2: Polynomials and Quadratics

- 1. What are polynomial equations and quadratic equations and how can we find roots?
- 2. How can real-world situations be modeled by quadratics and higher order polynomials?
- 3. What does it mean to solve a system of equations?

Time	Perform Ind	Content	Lessons	Vocabulary
Sept. – Oct. (4 weeks)	A2.N.3	Perform arithmetic operations with polynomial expressions containing rational coefficients	 perform four basic operations on polynomial 	monomial polynomial roots/zeros
	A2.A.7	Factor polynomial expressions completely, using any combination of the following techniques: common factor extraction, difference of two perfect squares, quadratic trinomials	 expressions factor polynomials lesson 2 solve quadratic equations by factoring and graphing completing the square and 	factor quadratic radicals inequalities systems rational
A2.A.25 Solve quadratic equations, using the quadratic formula its application quadratic formula	its applications (prove quadratic formula, rewrite	irrational extraneous		
		Know and apply the technique of completing the square	of circle equations, solve quadratics)	
	A2.A.20	Determine the sum and product of the roots of a quadratic equation by examining its coefficients	 quadratic formula lesson 3 quadratic applications and 	
	A2.A.21	Determine the quadratic equation, given the sum and product of its roots	graphing calculator usage lesson 4	
A2.A.4 Solve quadratic inequalities in one and two variables, algebraically and graphically	• write the equation of a quadratic given roots: sum and product of roots lesson 5			
	A2.A.26 Find the solution to polynomial equations of higher degree that can be solved using factor and solve polynomials of hi	 factor and solve polynomials of higher degree using factoring and 		
equations of h the graph	Approximate the solution to polynomial equations of higher degree by inspecting the graph	 quadratic formula approximate solutions to polynomials graphically 		
	A2.A.3	Solve systems of equations involving one linear equation and one quadratic equation algebraically Note: This includes rational equations that result in linear equations with extraneous roots.	 lesson 6 quadratic inequalities with applications absolute value inequalities with applications lesson 7 systems of equations: linear-quadratic (extraneous solutions) 	

Unit 3: Complex Numbers

Essential Questions:

What are imaginary and complex numbers? How can you analyze a quadratic to determine the nature of the roots?

Time	Perform Ind	Content	Lessons	Vocabulary
Oct. – Nov. (2 weeks)	A2.A.2 A2.N.6	Use the discriminate to determine the nature of the roots of a quadratic equation Write square roots of negative numbers in terms of <i>i</i>	 determine nature of roots of quadratic using graphs and discriminant determine missing coefficient based on complex numbe nature of the root conjugate rationalize 	rationalize radical
	A2.N.7	Simplify powers of <i>i</i>	nature of roots or a given root. lesson 2 • what is i	imaginary numbers
	A2.N.9	Perform arithmetic operations on complex numbers and write the answer in the form a+bi Note: This includes simplifying expressions with complex denominators.	 what is i simplify radicals in terms of i solve quadratics with imaginary roots 	
	A2.N.8	Determine the conjugate of a complex number	 lesson 3 powers of i (cycle of 4) basic operations (+, -, x) with complex numbers conjugate dividing complex numbers (rationalize denominator) lesson 4 find quadratic equation given complex roots 	

Unit 4: Rational Expressions and Equations

- 1. What are rational expressions and equations and what are the different ways to solve rational equations?
- 2. What is inverse variation and what real-world situations can be modeled by inverse variation?

Time	Perform Ind	Content	Lessons	Vocabulary
Nov. (1-2 weeks)	A2.A.16	Perform arithmetic operations with rational expressions and rename to lowest terms	 lesson 1/2 simplify rational expressions 	rational expressions rational equations complex fractions
	A2.A.17	Simplify complex fractional expressions	 four basic operations with rational expressions 	inverse variation
	A2.A.23 Solve rational equations and inequalities	 simplify complex fractional expressions solve rational equations and 		
	A2.A.5	Use direct and inverse variation to solve for unknown values	 solve rational equations and inequalities lesson 3 inverse variation: compare to direct variation, applications, graphs, solving for unknown value 	

Unit 5: Exponents and Radicals

- 1. How do different numerical exponents affect a base?
- 2. How can expressions be re-written using exponents or radicals?
- 3. What situations lend themselves to being expressed by equations with exponents or radical equations?

Time	Perform Ind	Content	Lessons	Vocabulary
Nov. – Dec. (2 weeks)	A2.A.9	Rewrite algebraic expressions that contain negative exponents using only positive exponents	• work with zero, negative, fractional	base exponent radical
	A2.A.8	Apply the rules of exponents to simplify expressions involving negative and/or fractional exponents	of exponents: use rule of exponents, re- write expressions with positive	radicand nth root conjugate rationalize denominator
	A2.N.1	Evaluate numerical expressions with negative and/or fractional exponents, without the aid of a calculator (when the answers are rational numbers)	exponents, evaluate numerical expressions without a	irrational number rational expression
	A2.A.10	Rewrite algebraic expressions with fractional exponents as radical expressions	 calculator, rewrite expressions with fractional exponents as radicals and vice versa lesson 2 solve equations with integral exponents, fractional exponents and/or radicals lesson 3 simplify radical expressions (nth root) basic operations (+, -, x) with radicals (simplify nth roots with variables as radicands) division of radicals (rationalize denominator with conjugates) 	
	A2.A.11	Rewrite algebraic expressions in radical form as expressions with fractional exponents		
	A2.A.22	Solve radical equations		
	A2.N.5	Rationalize a denominator containing a radical expression		
	A2.A.15	Rationalize denominators involving algebraic radical expressions		
	A2.A.13	Simplify radical expressions		
	A2.N.4	Perform arithmetic operations on irrational expressions		
	A2.A.14	Perform addition, subtraction, multiplication, and division of radical expressions		
	A2.N.2	Perform arithmetic operations (addition, subtraction, multiplication, division) with expressions containing irrational numbers in radical form		

Unit 6: Exponential Functions and Equations

- 1. What is an exponential expression, equation, or function?
- 2. What situations can be modeled by exponential functions?
- 3. What is e and how is it useful in modeling natural growth or decay?

Time	Perform Ind	Content	Lessons	Vocabulary
Dec. (2 weeks)		Graph exponential functions of the form $y = b^x$ for positive values of b , including $b = e$ Solve exponential equations with and without common basesSolve an application which results in an exponential function	 lesson 1 analyze graphs of exponential functions and compare to other functions analyze exponential growth and decay graphs and the situations they describe lesson 2 solve exponential equations using the method of finding common bases lesson 3 solve application solve application 	exponential e growth decay compound interest percent increase percent decrease asymptote
			problems both algebraically and graphically	

Unit 7: Logarithms

- 1. What is a logarithm?
- 2. How can logarithms be used to solve exponential equations?
- 3. What real world situations can be modeled by logarithmic functions?

Time	Perform Ind	Content	Lessons	Vocabulary
Jan. (2 weeks)	A2.A.18	Evaluate logarithmic expressions in any base	lesson 1 • graph the inverse of an	logarithm base
	A2.A.54	Graph logarithmic functions, using the inverse of the related exponential function	exponential function and discuss the resulting function and its equationwhat is a log	exponent inverse function common log natural log
	A2.A.19	Apply the properties of logarithms to rewrite logarithmic expressions in equivalent forms	 log_B N = E, B^E = N solve simple log equations by rewriting as an 	U
	A2.A.27	Solve exponential equations with and without common bases	 exponential equation common logs, natural logs lesson 2/3 	
		Solve a logarithmic equation by rewriting as an exponential equation	 explore and apply the properties of logs to rewrite expressions evaluate expressions with base e lesson 4 solve log equations using the properties of logs solve exponential equations using logs 	
	A2.A.12	Evaluate exponential expressions, including those with base e		

Unit 8: Sequence and Series

- 1. What is the difference between a series and a sequence?
- 2. What is the difference between an arithmetic and geometric series/sequence?
- 3. How can we derive the formula for any series?
- 4. What real-world situations can be modeled by a sequence or series?

Time	Perform Ind	Content	Lessons	Vocabulary
Feb. (2 weeks)	A2.N.10	Know and apply sigma notation	lesson 1what are sequences and	series sequence
	A2.A.34Represent the sum of a series, using signotationA2.A.29Identify an arithmetic or geometric sequence and find the formula for its <i>n</i> th term	Represent the sum of a series, using sigma notation	 series sigma notation (forwards and backwards) identify sequences as being 	sigma arithmetic geometric recursion
		sequence and find the	 identify sequences as being arithmetic or geometric find formula for nth term of sequence 	
		Determine the common difference in an arithmetic sequence	lesson 2 • find common difference and common ratio	
	A2.A.31	Determine the common ratio in a geometric sequence	• determine a specified term of a sequence lesson 3	
-	A2.A.33	Specify terms of a sequence, given its recursive definition	recursive definitionfind sum of series	
	A2.A.32	Determine a specified term of an arithmetic or geometric sequence		
	A2.A.35	Determine the sum of the first <i>n</i> terms of an arithmetic or geometric series		

Unit 9: Statistics

- 1. What are the different statistical tools that can be used to collect and analyze data?
- 2. What are some valid ways to use statistics and what are some non-valid ways to use statistics?
- 3. How is the normal distribution curve used as a predictor of outcomes?

Time	Perform Ind	Content	Lessons	Vocabulary
Feb. – March (2 weeks)	A2.S.1 A2.S.2	Understand the differences among various kinds of studies (e.g., survey, observation, controlled experiment) Determine factors which may affect the outcome of a survey	 lesson 1 discuss and experience data collection methods (one-variable stats) calculate measures of central tendency with data sets including 	correlation correlations coefficient normal distribution standard deviation variance regression central tendency
	A2.S.6	Determine from a scatter plot whether a linear, logarithmic, exponential, or power regression model is most appropriate	 frequency distributions discuss and calculate measures of dispersion (range, variance, standard deviation for 	mean, median, mode scatterplot interpolate extrapolate measures of dispersion
	A2.S.8	Interpret within the linear regression model the value of the correlation coefficient as a measure of the strength of the relationship	populations and samples). lesson 2 • discuss normal	frequency outlier
	A2.S.7	Determine the function for the regression model, using appropriate technology, and use the regression function to interpolate and extrapolate from the data	 distribution and determine whether data is normally distributed analyze normal distributions using the bell curve. lesson 3 create and analyze scatterplots for two- variable statistics datasets determine the regressions for all types of two-variable datasets for linear regressions, determine strength of the relationship using the correlation coefficient use regressions to interpolate and extrapolate 	
	A2.S.3	Calculate measures of central tendency with group frequency distributions		
	A2.S.4	Calculate measures of dispersion (range, quartiles, interquartile range, standard deviation, variance) for both samples and populations		
	A2.S.5	Know and apply the characteristics of the normal distribution		
	A2.S.16	Use the normal distribution as an approximation for binomial probabilities		

Unit 10: Probability

- 1. What is the difference between empirical probability and theoretical probability?
- 2. What is binomial probability and for what situations is the binomial probability formula useful?
- 3. How can the number of elements in a sample space be generated using permutations, combinations, and the Fundamental Principle of Counting?

Time	Perform Ind	Content	Lessons	Vocabulary
March	A2.S.14	Calculate empirical probabilities	lesson 1 • determine the number of	empirical probability theoretical probability
(2 weeks)	A2.S.13	Calculate theoretical probabilities, including geometric applications	• determine the number of elements in a sample space using combinations,	combinations permutations
	A2.S.10	Calculate the number of possible permutations $({}_{n}P_{r})$ of <i>n</i> items taken <i>r</i> at a time	 permutations, and the Fundamental Principle of Counting. compare and contrast empirical probability and theoretical probability calculate single-event 	binomial probability binomial expansion Pascal's Triangle sample space
	A2.S.11	Calculate the number of possible combinations $({}_{n}C_{r})$ of <i>n</i> items taken <i>r</i> at a time		at least, at most
	A2.S.9	Differentiate between situations requiring permutations and those requiring combinations	empirical probabilities and theoretical probabilities lesson 2 • discuss binomial probability	
	A2.S.12	Use permutations, combinations, and the Fundamental Principle of Counting to determine the number of elements in a sample space and a specific subset (event)	 and generate/derive the binomial probability formula solve <i>exactly</i>, <i>at least</i>, and <i>at most</i> problems using binomial probability formula lesson 3 investigate expanding binomials and 	
	A2.S.15	Know and apply the binomial probability formula to events involving the terms <i>exactly</i> , <i>at</i> <i>least</i> , and <i>at most</i>		
	A2.A.36	Apply the binomial theorem to expand a binomial and determine a specific term of a binomial expansion	 onionnals and generate/derive the binomial theorem using Pascal's Triangle and combinations discuss relationship between binomial theorem and binomial probability 	

Unit 11: Trigonometry – Six Trig Functions

- 1. What are the historical and current uses of trigonometry?
- 2. How are angles and trig ratios represented in the x-y coordinate plane?
- 3. How can we use our knowledge of special triangles to find exact values of trig functions?

Time	Perform Ind	Content	Lessons	Vocabulary
	A2.A.66 A2.A.60 A2.A.62 A2.A.57 A2.A.56 A2.A.57 A2.A.55 A2.A.55 A2.A.58 A2.A.59	Determine the trigonometric functions of any angle, using technology Sketch the unit circle and represent angles in standard position Find the value of trigonometric functions, if given a point on the terminal side of angle θ Sketch and use the reference angle for angles in standard position Know the exact and approximate values of the sine, cosine, and tangent of 0°, 30°, 45°, 60°, 90°, 180°, and 270° angles Express and apply the six trigonometric functions as ratios of the sides of a right triangle Know and apply the co-function and reciprocal relationships between trigonometric ratios Use the reciprocal and co-function relationships to find the value of the secant, cosecant, and cotangent of 0°, 30°, 45°, 60°, 90°, 180°, and 270° angles	 lesson 1 angles as rotations, terminal side, coterminal angles standard position and reference triangles revisit SOHCAHTOA in the context of the first quadrant find value of cosine, sine, tangent given a point on the terminal side in any quadrants lesson 2 find exact values of sine, cosine, tangent using special triangles or unit circle lesson 3 introduce reciprocal trig functions find exact values of six trig functions explore the co-function relationships 	cosine sine tangent cosecant secant cotangent standard position terminal side coterminal angle reference angle reference triangle unit circle complementary co-function reciprocal function

Unit 12: Trigonometry Equations, Identities, and Radians

- 1. What are radians and why are they used in mathematics and science?
- 2. Which situations call for trigonometric equations and how are these equations solved?
- 3. How are the trigonometric identities useful?

Time	Perform	Content	Lessons	Vocabulary
April (3 weeks)	Ind A2.A.64	Use inverse functions to find the measure of an angle, given its sine, cosine, or tangent	lesson 1 • revisit when and how to use inverse trig functions	radian identities inverse
	A2.A.68	Solve trigonometric equations for all values of the variable from 0° to 360°	 define what a trig equation is and explore how to solve linear trig equations 	arc length sector double angle half angle
	A2.A.67	Justify the Pythagorean identities	lesson 2solve quadratic trig	sum of angles
	A2.M.1	Define radian measure	equations, with the same trig function	difference of angles
	A2.M.2	Convert between radian and degree measures	• introduce and prove Pythagorean identities	
	A2.A.61	Determine the length of an arc of a circle, given its radius and the measure of its central angle	equations algebraically and graphically using	
	A2.A.76 Apply the angle sum and difference double angle ide	Pythagorean identities and double angle identities		
	A2.A.77	Apply the double-angle and half- angle formulas for trigonometric functions		

Unit 13: Trigonometry Graphs

Essential Questions for this unit:

- 1. What is unique about sinusoidal and trigonometric curves?
- 2. How does changing the equation of a trig function affect the graph of the function?
- 3. What situations can be modeled using trigonometric graphs and functions?

Time	Perform Ind	Content	Lessons	Vocabulary
Time May (2 weeks)		ContentSketch and recognize one cycle of a function of the form $y = A \sin Bx$ or $y = A \cos Bx$ Determine amplitude, period, frequency, and phase shift, given the graph or equation of a periodic functionWrite the trigonometric function that is represented by a given periodic graphSketch the graph of the inverses of the sine, cosine, and tangent functionsRestrict the domain of the sine, cosine, and tangent 	lesson 1 • explore sine and cosine curves and discover how changes in the equation affect the graph (amplitude, frequency, vertical shift, phase shift) • unwrap the unit circle to create a sine and cosine curve • find equation given graph, sketch graph given equation lesson 2 explore tangent curve by unwrapping the unit circle • explore reciprocal trig graphs • find equation given graph, sketch graph given equation lesson 3 find equation given graph, sketch graph given equation lesson 3 application problems, solved graphically and algebraically lesson 4 graphs of inverse trig	Vocabulary amplitude frequency phase shift period sinusoidal restricted domain
			lesson 4	

Unit 14: Trigonometry of Non-Right Triangles

- 1. How can you use trigonometry in non-right triangles?
- 2. What situations can be described by non-right triangles?
- 3. What is ambiguous about the "ambiguous case"?

Time	Perform Ind	Content	Lessons	Vocabulary
May – June (2 weeks)	A2.A.73	Solve for an unknown side or angle, using the Law of Sines or the Law of Cosines Determine the area of a triangle or a parallelogram, given the measure of two sides and the included angle Determine the solution(s) from the SSA situation (ambiguous case)	 lesson 1 discuss the applications of trig in non-right triangles use law of sines to find missing sides and angles use law of cosines to find missing sides and angles 	law of sines law of cosines ambiguous case area
	A2.A.75			
	A2.A.13			
			 applications of law of sines and law of cosines 	
			 lesson 3 explore and prove the area of a triangle formula find area of triangles and parallelograms 	
			 applications lesson 4 the ambiguous case 	